Our Testing Services
The adhesion of Nickel coating test evaluates the adherence of a nickel plating to an underlying copper/ copper alloy material.
This test is used to determine the insulation elasticity and propagation of damage through the wire/cable insulation.
This test determines if a finished wire specimen will block (stick to itself) when subjected to the rated temperature of the specimen. While on an aircraft, wires may be exposed to high temperatures and it important to check if the finished wire specimens are prone to blocking. At the end of the test, we will inspect the wire and examine for adhesion (blocking) of adjacent turns.
Bonding compounds are often used as a means of protecting electrical terminations from the moisture and other contaminates. Furthermore, proper adhesion of potting compounds can have a positive impact on component durability to vibration and mechanical shocks. The bondability of insulation to potting compounds test evaluates the adhesion to the wire/cable insulation.
Knowing the weight of every component on an aircraft, down to the last wire, is vital to good design. This test is to be used to evaluate the weight of a finished cable specimen.
This test determines the resistance of wire insulation to cracking at low temperature while being bent around a mandrel. Using a special cold chamber, we can condition the specimen at the low temperatures that can be experienced during flight and study how it reacts to the extreme conditions. This is a very good way to determine if the wire sample would be able to survive at these typical temperatures. At the end of the test, we will examine for any visible cracks then perform a wet dielectric test for assurance.
This test determines the diameter of the conductor after the insulation has been removed. This physical test can be very useful when trying to conduct tests or determining if a wire sample can be used in a specific machine. At the end of this test, we will report each measured conductor diameter and the average conductor diameter for each specimen measured.
This test determines a conductor's direct current (DC) resistance at a specified reference temperature (typically set at ambient temperature). There are two methods used to conduct this test known as the Kelvin Bridge Method and the Wheatstone Bridge Method which are used to obtain the resistance of the specimen. Both methods will give similar results, however, the Kelvin Bridge Method is more accurate. At the end of the test, the reported results include the specimen's conductor resistance and the test parameters.
The purpose of this test is to assess the conductor's ability to absorb solder. Soldering is a common method for wiring to connectors on aircraft. Certain conductors plates such as tin and silver are more solderable and thus used for these applications.
Upon completion of a fabricated wire, it is crucial to ensure that each of the wire's components are suitable for use. Conductor Strand Blocking provides a method to determine if conductor strands will adhere to each other in the finished wire. This test was developed as a process control test for silver coated copper conductors of MIL-DTL-81381 polyimide insulated wires, but it may be applied to other conductors and insulation types when strand blocking is a potential problem.
Also referred to as Contrast of Jacket or Contrast Test. The readability of a wire/cable is of critical importance for the proper installation, maintenance, and repair of the wiring system, thus the reason why UV laser marking of wires has become a widely used technology through the aerospace industry and has several benefits over traditional ink marking of wires/cables. The contrast measurement test examination evaluates the contrast of the UV laser marked area with the unmarked parts of the wire.
High voltage spikes onto wires/cables can progressively degrade the insulation performance and lead to an insulation breach and/or create conductive paths through the insulation. In this test, the sample is exposed to a high voltage to determine the corona inception and corona extinction voltage.
This test determines if a finished wire specimen will block (stick to itself) or flaring of layers when subjected to the rated temperature of the specimen. While on an aircraft, wires may be exposed to high temperatures and it important to check if the finished wire specimens are prone to blocking or delamination. At the end of the test, we will inspect the wire and examine for adhesion (blocking) and delamination (separation of layers) of adjacent turns.
This test evaluates tape wrapped insulation for sealing between wraps after thermal stress.
This test is typically used as a process control test to ensure that the measured diameter of a manufactured wire is within the range provided in the wire/cable specification. The wire/cable is measured in several locations and the average diameter is reported. For non-uniform cables, such as with twisted pairs, measurements are made both for the minimum and maximum diameter.
The dielectric constant measures the material's ability to store electrical energy, while the power factor assesses the dissipation of energy. Both parameters are essential for ensuring the reliable performance of the insulation in electrical applications.
The dielectric is perhaps one of the most referenced tests when examining wires. The reason is that it tests the most important part of the wire insulation: determine if the wire insulation is free of breaches (or has been sufficiently degraded such that a high voltage would breach any weak points in the insulation). The basics of the test are that the entire wire, except for an inch at both ends, is placed in a water bath (with salt and wetting agent) and a high voltage potential is placed between the conductor and the return electrode in the water bath. If there is a failure in the insulation, then there will be a noticeable current flow. Dependent on the test method used, the pretest soak time, voltage amplitude and type (AC or DC) will vary.
The test evaluates a wire's ability to prevent arc-propagation to other wires in the sample harness.
The dynamic cut-through test is designed to assess the cut-through force of a wire/cable specimen. The wire/cable specimen is compressed under a the fine edge of a jig until contact is made between the wire/cable conductor and the test jig. The pass/fail criteria for this test is based on the wire/cable's specification.
Flammability is perhaps one of the most common and most important tests performed on aerospace wiring. In general, a length of the wire/cable under test is placed in a draft-free chamber and hung free over a high-temperature flame for 30seconds - 15 minutes (specification dependent). A piece of tissue paper is placed under the sample to catch falling debris.
SAE Test Method: In this test, the specimen is flexed 180Deg between two mandrels until there is a break in electrical conductivity of the conductor. The pass/fail criteria of is based on the particular specification, typically set at a minimum threshold for the number of flexing cycles with conductor loss.
The forced hydrolysis test places wire/cable specimen in a high-temperature water bath for an extended duration to evaluate the durability of a wire insulation in high-humidity conditions. Depending on the particular wire specification needs, the test may be required to run for thousands of hours. After the prolonged exposure, the sample is then examined and exposed to a dielectric voltage withstand (DVW) test.
The bust duct test simulates the condition where a high-temperature, high-pressure air line has ruptured near a wire harness. The test objective is to determine how long the wire/cable can be exposed to these harsh conditions without impacting the insulation reliability.
The humidity resistance test evaluates the impact of prolonged heat and humidity exposure to wire/cable insulation.
The impulse dielectric tests can be thought of a production line means of checking for insulation/jacket breaches in wires/cables. In this test, a voltage is placed on the specimen and the specimen is pulled under a 'chain mail' curtain connected to ground. The test is performed at a higher voltage than the standard dielectric tests performed on wires/cables, but this is necessary given the short duration of the voltage differential across the insulation/jacket.
Measuring the insulation concentricity and wall thickness is a quality assurance test that can identify uniformity issues. Wires with non-uniform insulation (or cables with non-uniform jackets) will have an unbalanced insulation wall thickness that can make the wire/cable more susceptible to mechanical or electrical failure. This test can be performed on wire gauges ranging from 30AWG to 0000AWG and one wholly tape wrapped and extruded constructions.
This test is to be used to evaluate the cross-linking of certain types of wire insulation.
This evaluation ensures that the insulation layers are applied with the required amount of overlap to provide adequate protection and electrical insulation.
This test determines the insulation resistance of a finished wire sample. Insulation resistance is of interest in high impedance circuits and as an insulation process quality control test. When used as part of a wire/cable environmental testing, prolonged thermal exposure, and/or extended high voltage testing, changes in the insulation resistance can be used as an indicator of insulation deterioration.
This test provides tensile property data on extruded electrical wire insulation removed from the wire/cable specimen. Identifying the insulation's tensile properties are useful to determine the ability to withstand mechanical stresses the wire/cable may experience in service conditions.
This test is to be used to determine whether a specimen will crack when wrapped upon itself or around a mandrel.
The jacket flaws test (or spark test) aims to identify any defects in a wire/ cable's outer insulation that would allow an amount of leakage current.
The life cycle test (also referred to as the 'Multi-day heat aging test') seeks to assess short-term elevated temperature exposure to a wire/cable above the sample's temperature rating.
During the degradation process of ETFE and XL-ETFE, fluorine gas is released from the insulation into the environment. This test seeks to quantify the amount of off-gassed material.
The long-term readability of wire/cable identification is important for supporting EWIS maintenance operations. A wire/cable with an easily identifiable circuit identification will make it easier to identify the correct circuit in need of evaluation/repair/replacement. If the identification has worn off, then debugging operations may require removing more equipment and/or demating more connectors.
The marking durability test seeks to evaluate the wire/cable identification after abrasion. The pass/fail criteria are based on the individual wire/cable specification but is primarily focused the readability of the wire/cable marks.
The Nitric acid immersion test determines the ability of a wire's insulation to resist breakdown in the presence of a strong acid. Test samples are submerged in red fuming nitric acid for a duration of 8 hours. Resistance to the acid is determined via a wet dielectric test - any dielectric breakdown is considered a test failure.
The notch test is a test that examines the propagation of nick in the top layer of a wire. Small notches are common during installation or maintenance of wires, and this test evaluates how well the insulation can withstand mechanical stresses after incurring a notch.
The overload resistance test, also known as the smoke resistance test, is designed to examine the durability of the wire insulation under extended periods of internal heating caused by over-current conditions.
The property retention test evaluates the mechanical properties of a specimen of finished insulated wire before and after 1000 hours of thermal aging.
The chemical composition of a wire's insulation degrades at elevated temperature; this test provides data to establish curves describing the rate of degradation with respect to the exposure temperature.
In this test, a sample is exposed to a variety of aerospace fluids. The duration and temperature of the exposure varies and is defined by the selected test standard.
This test assesses the wire/cable's insulation durability to sharp edges at ambient temperature. The sample is abraded until there is electrical conductivity between the scrape abrasion jig and sample under test.
This test assesses the wire/cable's insulation durability to sharp edges at eleveated temperature. The sample is abraded until there is electrical conductivity between the scrape abrasion jig and sample under test.
The Seamless or Smooth Surface Verification test is a process control test used to ensure that smooth wrapped tape insulation has properly annealed without a visible outer edge or observable internal wrapping lines.
The smoke resistance test places a high current through the wire/cable to determine if the insulation/jacket will produce smoke. The current is increased on the specimen until the conductor temperature reaches the rated insulation temperature.
This test is used to generate data for comparison between cable specimens using the same stiffness and springback apparatus. Stiffness and springback affect harness manufacturing, harness and cable installation, and maintenance operations.
The strip force test quantitatively evaluates the ease of removing insulation from a finished wire sample. It is important in any electrical system that wire insulation be adherent enough to the conductor to maintain structural integrity and non-adherent enough such that a standard wire stripping tool may readily remove insulation as needed.
The purpose of this test is to measure the resistance of the outer surface of the insulation in a high humidity environment. This is to ensure that the resistance along the outer surface is large enough to prevent leakage current between connections.
This method is intended for use in determining the tensile strength and percentage elongation at break of conductors.
The thermal endurance (or high temperature endurance) test determines the ability of the insulation of a firezone or similar wire to resist degradation due to exposure to high temperature.
The thermal index test (also known as the Relative Thermal Life and Temperature Index) is based on multiple cycles of elevated temperature exposure, mechanical stressing, and electrical insulation integrity checks. The goal of this test is to determine the maximum continuous operational temperature for the wire/cable for a targeted time interval (the common goal for aerospace wires is to find the maximum continuous temperature for 10,000 hours of operation). This is achieved with long-term exposure to temperatures above this desired temperature rating.
Temperature cycling can cause rapid degradation of wire/cable insulation integrity. This can manifest and insulation splits, cracks, and/or delamination. Often an overlooked test method for assessment, the thermal shock test proves and excellent means of assessing the construction quality of a wire or cable.
The purpose of the time/current to smoke test is to determine the time (and electrical current) necessary for a wire specimen to produce smoke. The pass/fail criteria for this test is based on the particular wire/cable specification but is typically based on the specimen able to sustain an electrical current level (e.g. 15A) without producing visible smoke.
In this test, the polyamide (or modified polyamide) topcoat of a sample wire is exposed to boiling water vapor and visually examined for cracking.
In general, a visual inspection can be used to determine any cracks, conductor exposure and wire degradation which are good indicators for determining the electrical integrity of a wire specimen or cable.
This test is typically run as part of posttest assessment procedures to evaluate the sample's insulation/jacket integrity after an environmental or other tests.
The weathering resistance test exposes wire specimens to UV light and condensation and evaluates for any effects on the insulation.
This test is used to evaluate the amount of weight lost, if any, from a wire specimen when exposed to temperature and vacuum for a period of several days.
The wet arc-resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment.
The wicking test focuses on the wire insulation's propensity for drawing fluids into the insulation.
This test is used to determine the time for an insulated wire to interrupt current in overcurrent conditions.
Knowing the weight of every component on an aircraft, down to the last wire, is vital to good design. This test is to be used to evaluate the weight of a finished wire specimen, it may also be applied to uninsulated conductor for certain standards.
The wrap back examines a wire/cable's insulation susceptibility to breach when tightly wrapped around itself and exposed to elevated temperatures. This test is usually required in the individual wire specifications as part of the insulation integrity assessment. After the elevated temperature exposure, the specimen is visually examined for any insulation cracks (or delamination in the case of tape wrapped insulations). The insulation integrity is then examined with a wet dielectric test.
This test is used to evaluate the quality of insulation and its ability to withstand wrinkling. Wrinkles can occur to insulation when bent back and forth frequently, eventually causing the insulation to deteriorate.