View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Standard & Regulation Aging Wires & Systems Maintenance & Sustainment Protection & Prevention Management Conference & Report Research Miscellaneous Arcing
Popular Tags
Visual Inspection High Voltage AS50881 MIL-HDBK MIL-HDBK-525 FAR Electromagnetic Interference (EMI) AS4373 Maintenance FAR 25.1707 Wire System Circuit Protection
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 AC 43 Accelerated Aging accessibility ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude Aluminum arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Resistance Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS29606 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS6324 AS81824 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM B230 ASTM B355 ASTM B470 ASTM D150 ASTM D2671 ASTM D495 ASTM D8355 ASTM D876 ASTM F2639 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive Avionics backshell batteries bend radius Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification cfr 25.1717 Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection cleaning clearance Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor Conductor Testing conductors conduit Connector connector installation Connector rating connector selection connector testing connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) corrosion prevention Cracking creepage D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR electric aircraft Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electrified Vehicles Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) Electrostatic Discharge EMC EMF EMI EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 Fault fault tree Filter Line Cable Fixturing Flammability fleet reliability Flex Testing fluid exposure Fluid Immersion Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Fuse Future Tech galvanic corrosion Glycol Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design harness protection hazard Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage High Voltage Degradation HIRF History Hot Stamping Humidity Variation HV connector HV system ICAs IEC 60851 IEC60172 IEEE immersion insertion loss Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning lightning protection liquid nitrogen lithium battery lunar Magnet wire maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-23053E MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-F-5372 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-7928/5 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 MIL–STD–5088 Military 5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyamide polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Preventative Maintenance Program Probability of Failure Product Quality PTFE pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE SAE Committee Sanitizing Fluids Secondary Harness Protection separation separation distance Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding Shrinkage signal signal cable Silver silver plated wire silver-plating skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy superconductor supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing testing standard Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs UL94 USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance volume resistivity vw-1 wet arc white paper whitelisting Winding wire Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code

Our Testing Services

Bend Test
$850
Spec
AS22759 Method 5.7.6 AS4373 Method 712 AS6070 Method 5.4.4 AS85485 Method 4.7.3 EN3475 Method 405 MIL-DTL-25038J Method 4.6.5 NEMA 27500 Method 4.3.11
Type
Physical
For
Insulation

This test is used to determine the insulation elasticity and propagation of damage through the wire/cable insulation.

Blocking
$1,220
Spec
ANSI/NEMA WC 27500 Section 4.3.15 AS22759 Paragraph 5.3.11 AS4373 Method 808 AS5382 Method 5.4.9 AS6070 Method 5.3.4 AS81044 Method 4.7.5.11 AS85485 Method 4.7.4 BSS7324 Method 7.7
Type
Thermal
For
Insulation

This test determines if a finished wire specimen will block (stick to itself) when subjected to the rated temperature of the specimen. While on an aircraft, wires may be exposed to high temperatures and it important to check if the finished wire specimens are prone to blocking. At the end of the test, we will inspect the wire and examine for adhesion (blocking) of adjacent turns.

Cable Weight
$560
Spec
ANSI/ NEMA WC27500 Method 4.5 AS6070 Method 5.1.4
Type
Physical
For
Cable

Knowing the weight of every component on an aircraft, down to the last wire, is vital to good design. This test is to be used to evaluate the weight of a finished cable specimen.

Cold Bend Test
$2,770
Spec
ANSI-NEMA-WC27500 Method 4.3.6 AS4373 Method 702 AS6070 Method 5.4.1 AS22759 Paragraph 5.7.3 AS81044 Method 4.7.5.16 AS85485 Method 4.7.19 BSS7324 Method 7.10 EN3475 Method 406 FED-STD-228 Method 2021 JES292 Method 63 J1128 Method 6.6 MIL-DTL-17 Method 4.8.19 MIL-DTL-24643C Methods 4.8.8 and 4.8.9 MIL-DTL-25038J Method 4.6.8 MIL-DTL-915 Method 4.5.5 MIL-STD-2223 Method 2004 MIL-W-81822 Method 4.6.21 NEMA HP100.1-1991 Method 7.2.10
Type
Thermal
For
Insulation

This test determines the resistance of wire insulation to cracking at low temperature while being bent around a mandrel. Using a special cold chamber, we can condition the specimen at the low temperatures that can be experienced during flight and study how it reacts to the extreme conditions. This is a very good way to determine if the wire sample would be able to survive at these typical temperatures. At the end of the test, we will examine for any visible cracks then perform a wet dielectric test for assurance.

Conductor Solderability
$2,070
Spec
ANSI/ NEMA WC27500 Method 4.3.18 AS22759 Method 5.2.3 AS4373 Method 105 AS6324 Method 5.2.3 AS81044 Method 4.7.5.26 EN3475 Method 509 J1127 Method 6.2 J1128 Method 6.2 MIL-DTL-32630 Method 4.7.18 MIL-PRF-55514 Method 4.8.16 MIL-STD-202 Method 208 MIL-STD-2223 Method 5004
Type
Chemical
For
Conductor

The purpose of this test is to assess the conductor's ability to absorb solder. Soldering is a common method for wiring to connectors on aircraft. Certain conductors plates such as tin and silver are more solderable and thus used for these applications.

Continuity of Conductors 
$560
Spec
ANSI-NEMA WC27500 Method 4.3.8 AS85485 Method 4.7.7.1 EN3475 Method 306 MIL-DTL-24643C Method 4.9.10 MIL-DTL-3885 Method 4.4.1 MIL-DTL-49055G Method 4.7.8
Type
Electrical
For
Conductor

The continuity of conductors test examines the conductor for flaws and discontinuities. This is performed by placing a voltage across a wire sample.

Delamination and Blocking
$1,420
Spec
EN3475 Method 403
Type
Thermal
For
Insulation

This test determines if a finished wire specimen will block (stick to itself) or flaring of layers when subjected to the rated temperature of the specimen. While on an aircraft, wires may be exposed to high temperatures and it important to check if the finished wire specimens are prone to blocking or delamination. At the end of the test, we will inspect the wire and examine for adhesion (blocking) and delamination (separation of layers) of adjacent turns.

Delamination/ Lamination Sealing
$910
Spec
AS4373 Method 809 ANSI/ NEMA 27500 Section 4.3.14 AS22759 Paragraph 5.3.8
Type
Thermal
For
Insulation

This test evaluates tape wrapped insulation for sealing between wraps after thermal stress.

Dielectric Withstand Voltage
$690
Spec
ANSI NEMA HP-3 Method 6.2.3 ASTM D3032 Section 8 AS22759 Paragraph 5.4.4 AS4373 Method 510 EN3475 Method 302 FED-STD-228 Method 6111 ISO 19642-2 Method 5.2.3 J1128 Method 6.4 MIL-DTL-17 Method 4.8.4 MIL-DTL-24643C Method 4.9.8 MIL-DTL-25038 Method 4.6.6 MIL-DTL-26482 Method 4.6.10 MIL-DTL-38999 Method 4.5.11 MIL-DTL-83733 Method 4.7.17.1 MIL-PRF-55339 C Method 4.5.13 MIL-STD-202 Method 301 MIL-STD-2223 Method 3005 MIL-W-81822 Method 4.6.20 NEMA 27500 Method 4.3.3 NEMA 27500 Method 4.3.7
Type
Electrical
For
Insulation

The dielectric is perhaps one of the most referenced tests when examining wires. The reason is that it tests the most important part of the wire insulation: determine if the wire insulation is free of breaches (or has been sufficiently degraded such that a high voltage would breach any weak points in the insulation). The basics of the test are that the entire wire, except for an inch at both ends, is placed in a water bath (with salt and wetting agent) and a high voltage potential is placed between the conductor and the return electrode in the water bath. If there is a failure in the insulation, then there will be a noticeable current flow. Dependent on the test method used, the pretest soak time, voltage amplitude and type (AC or DC) will vary.

Flammability
$2,610
Spec
AITM Method 2.0005 ANSI -NEMA WC27500 Method 4.3.19 AS22759 Method 5.7.10 AS23053 Rev A Method 4.14 AS4373 Method 801 AS5382 Method 5.6.1 AS6070 Method 5.5.1 AS654 Method 5.3.12 AS81044 Method 4.7.5.18 AS85485 Method 4.7.13 ASTM D2671 Method 68 ASTM D876 Method 17-21 ASTM D3032 Method 18 EN3475 Method 407 FAR 25.853 Appendix F, Part I, Section a.3 FED-STD-228 Method 5221 MIL-DTL-25038 Method 4.6.10 MIL-DTL-32554 Method 4.6.9 MIL-DTL-32630 Method 4.7.6 MIL-DTL-81381 4.6.4.16 MIL-W-81822 Method 4.6.26
Type
Chemical
For
Insulation

Flammability is perhaps one of the most common and most important tests performed on aerospace wiring. In general, a length of the wire/cable under test is placed in a draft-free chamber and hung free over a high-temperature flame for 30seconds - 15 minutes (specification dependent). A piece of tissue paper is placed under the sample to catch falling debris.

Impulse Dielectric Test
$800
Spec
NEMA27500 Method 4.3.3 MIL-STD-2223 Method 3002 AS4373 Method 503 AS4373 Method 505 ASTM D3032 Method 13
Type
Electrical
For
Insulation

The impulse dielectric tests can be thought of a production line means of checking for insulation/jacket breaches in wires/cables. In this test, a voltage is placed on the specimen and the specimen is pulled under a 'chain mail' curtain connected to ground. The test is performed at a higher voltage than the standard dielectric tests performed on wires/cables, but this is necessary given the short duration of the voltage differential across the insulation/jacket.

Insulation Concentricity and Wall Thickness
$830
Spec
ANSI/ NEMA WC27500 AS23053 Method 5.3.4 AS4373 Method 101 AS22759 Method 5.5.5 AS85485 Method 4.7.5 AS81044 Method 4.7.5.10 ASTM D3032 Method 16 ASTM D374 J1128 Method 5.4 MIL-DTL-24643C Method 4.7.1 MIL-DTL-25038 Method 4.6.2 MIL-W-81822 Method 4.6.13 NEMA WC 57 Method 6.11
Type
Mechanical
For
Wire

Measuring the insulation concentricity and wall thickness is a quality assurance test that can identify uniformity issues. Wires with non-uniform insulation (or cables with non-uniform jackets) will have an unbalanced insulation wall thickness that can make the wire/cable more susceptible to mechanical or electrical failure. This test can be performed on wire gauges ranging from 30AWG to 0000AWG and one wholly tape wrapped and extruded constructions.

Insulation Crosslink Proof
$1,370
Spec
ANSI/ NEMA WC27500 Method 4.3.10 AS22759 Method 5.3.10 AS4373 Method 811 AS85485 Method 5.11 J1128 Method 6.12
Type
Thermal
For
Insulation

This test is to be used to evaluate the cross-linking of certain types of wire insulation.

Insulation Tensile Strength and Elongation
$580
Spec
ANSI NEMA WC27500 AS4373 Method 705 AS5382 Method 5.5.7 AS81044 Method 4.7.5.7 AS85485 Method 4.7.16 ASTM D3032 Section 17 FED-STD-228 Method 3031 MIL-STD-2223 Method 2001 MIL-W-81822 Method 4.6.10
Type
Mechanical
For
Insulation

This test provides tensile property data on extruded electrical wire insulation removed from the wire/cable specimen. Identifying the insulation's tensile properties are useful to determine the ability to withstand mechanical stresses the wire/cable may experience in service conditions.

Jacket Flaws (Spark Test)
$2,460
Spec
ANSI/ NEMA WC27500 Method 4.3.4 AS4373 Method 505 AS22759 Method 5.3.3 AS81044 Method 4.7.5.1 ASTM D3032 Method 13 FED-STD-228 Method 6211 J1128 Method 6.5 MIL-DTL-17 Method 4.8.3 MIL-DTL-24643C Method 4.9.9 MIL-DTL-25038 Method 4.6.13 MIL-DTL-49055G Method 4.7.3 MIL-STD-2223 Method 3002 SAE AS85485 §4.7.17.1 MIL-W-81822 Method 4.6.17
Type
Electrical
For
Insulation

The jacket flaws test (or spark test) aims to identify any defects in a wire/ cable's outer insulation that would allow an amount of leakage current.

Low Fluoride Off Gassing
$2,060
Spec
ANSI NEMA WC27500 Method 4.3.21 AS4373 Method 608 AS22759 Paragraph 5.3.7
Type
Chemical
For
Insulation

During the degradation process of ETFE and XL-ETFE, fluorine gas is released from the insulation into the environment. This test seeks to quantify the amount of off-gassed material.

PTFE Tape-Wrapped Jacket Delamination
$310
Spec
ANSI/ NEMA 27500
Type
Physical
For
Jacket

This test is a visual examination of a tape-wrapped PTFE jacket intended to identify any evidence of delamination.

Seamless Verification
$750
Spec
WC27500 Section 4.3.20 AS4373 Method 110 AS22759 Paragraph 5.3.6
Type
Physical
For
Wire

The Seamless or Smooth Surface Verification test is a process control test used to ensure that smooth wrapped tape insulation has properly annealed without a visible outer edge or observable internal wrapping lines.

Shield Coverage
$580
Spec
AS85485 Method 5.21 ANSI NEMA WC27500
Type
Physical
For
Cable

Shield coverage is determined by a mathematical formula as defined in AS85485 dependent on the physical properties of the cable shield.

Shield Strand Coating
Call for Pricing
Spec
ANSI/ NEMA WC27500 Method 4.3.2.2
Type
Chemical
For
Cable
Thermal Shock
$1,570
Spec
AS22759 Paragraph 5.7.4 AS4373 Method 805 AS39029 Method 4.7.7 AS6070 Method 5.5.2 AS81044 Method 4.7.5.17 AS85485 Method 5.25 ASTM D3032 Section 21 EN3475 Method 404 MIL-DTL-25038 Method 4.6.12 MIL-DTL-32554 Method 4.6.2 MIL-DTL-32630 Method 4.7.9 MIL-DTL-49055G Method 4.7.7 MIL-PRF-55514 Method 4.8.19.1 MIL-STD-202 Method 107 MIL-STD-2223 Method 4004 MIL-STD-810 Method 510 NEMA 27500 Method 4.3.9
Type
Thermal
For
Insulation

Temperature cycling can cause rapid degradation of wire/cable insulation integrity. This can manifest and insulation splits, cracks, and/or delamination. Often an overlooked test method for assessment, the thermal shock test proves and excellent means of assessing the construction quality of a wire or cable.

Visual Examination/ Inspection of Product
$460
Spec
ANSI/ NEMA WC27500 Method 4.3.1 AS4373 Method 711 AS5382 Method 5.1 AS6370 Method 4.6.1 AS81044 Method 4.7.1 AS85485 Method 5.13 EIA-364 Method 18 EN3475 Method 201 MIL-C-82621 Method 4.4.1.1 MIL-DTL-25038 MIL-DTL-32630 Method 4.7.1 MIL-DTL-49055 Method 4.7.1 MIL-PRF-55339 C Method 4.5.1.1 MIL-PRF-55514 Method 4.8.01 MIL-W-81822 Method 4.6.1
Type
Physical
For
Cable

In general, a visual inspection can be used to determine any cracks, conductor exposure and wire degradation which are good indicators for determining the electrical integrity of a wire specimen or cable.

Voltage Proof Test
$540
Spec
EN3475 Method 302 NEMA 27500 Method 4.3.7 ASTM D3032 Method 8 AS4373 Method 510
Type
Electrical
For
Insulation

This test is typically run as part of posttest assessment procedures to evaluate the sample's insulation/jacket integrity after an environmental or other tests.