Our Testing Services
This test is used to determine the insulation elasticity and propagation of damage through the wire/cable insulation.
This test determines if a finished wire specimen will block (stick to itself) when subjected to the rated temperature of the specimen. While on an aircraft, wires may be exposed to high temperatures and it important to check if the finished wire specimens are prone to blocking. At the end of the test, we will inspect the wire and examine for adhesion (blocking) of adjacent turns.
Knowing the weight of every component on an aircraft, down to the last wire, is vital to good design. This test is to be used to evaluate the weight of a finished cable specimen.
This test determines the resistance of wire insulation to cracking at low temperature while being bent around a mandrel. Using a special cold chamber, we can condition the specimen at the low temperatures that can be experienced during flight and study how it reacts to the extreme conditions. This is a very good way to determine if the wire sample would be able to survive at these typical temperatures. At the end of the test, we will examine for any visible cracks then perform a wet dielectric test for assurance.
The purpose of this test is to assess the conductor's ability to absorb solder. Soldering is a common method for wiring to connectors on aircraft. Certain conductors plates such as tin and silver are more solderable and thus used for these applications.
The continuity of conductors test examines the conductor for flaws and discontinuities. This is performed by placing a voltage across a wire sample.
This test determines if a finished wire specimen will block (stick to itself) or flaring of layers when subjected to the rated temperature of the specimen. While on an aircraft, wires may be exposed to high temperatures and it important to check if the finished wire specimens are prone to blocking or delamination. At the end of the test, we will inspect the wire and examine for adhesion (blocking) and delamination (separation of layers) of adjacent turns.
This test evaluates tape wrapped insulation for sealing between wraps after thermal stress.
The dielectric is perhaps one of the most referenced tests when examining wires. The reason is that it tests the most important part of the wire insulation: determine if the wire insulation is free of breaches (or has been sufficiently degraded such that a high voltage would breach any weak points in the insulation). The basics of the test are that the entire wire, except for an inch at both ends, is placed in a water bath (with salt and wetting agent) and a high voltage potential is placed between the conductor and the return electrode in the water bath. If there is a failure in the insulation, then there will be a noticeable current flow. Dependent on the test method used, the pretest soak time, voltage amplitude and type (AC or DC) will vary.
Flammability is perhaps one of the most common and most important tests performed on aerospace wiring. In general, a length of the wire/cable under test is placed in a draft-free chamber and hung free over a high-temperature flame for 30seconds - 15 minutes (specification dependent). A piece of tissue paper is placed under the sample to catch falling debris.
The impulse dielectric tests can be thought of a production line means of checking for insulation/jacket breaches in wires/cables. In this test, a voltage is placed on the specimen and the specimen is pulled under a 'chain mail' curtain connected to ground. The test is performed at a higher voltage than the standard dielectric tests performed on wires/cables, but this is necessary given the short duration of the voltage differential across the insulation/jacket.
Measuring the insulation concentricity and wall thickness is a quality assurance test that can identify uniformity issues. Wires with non-uniform insulation (or cables with non-uniform jackets) will have an unbalanced insulation wall thickness that can make the wire/cable more susceptible to mechanical or electrical failure. This test can be performed on wire gauges ranging from 30AWG to 0000AWG and one wholly tape wrapped and extruded constructions.
This test is to be used to evaluate the cross-linking of certain types of wire insulation.
This test provides tensile property data on extruded electrical wire insulation removed from the wire/cable specimen. Identifying the insulation's tensile properties are useful to determine the ability to withstand mechanical stresses the wire/cable may experience in service conditions.
The jacket flaws test (or spark test) aims to identify any defects in a wire/ cable's outer insulation that would allow an amount of leakage current.
During the degradation process of ETFE and XL-ETFE, fluorine gas is released from the insulation into the environment. This test seeks to quantify the amount of off-gassed material.
This test is a visual examination of a tape-wrapped PTFE jacket intended to identify any evidence of delamination.
The Seamless or Smooth Surface Verification test is a process control test used to ensure that smooth wrapped tape insulation has properly annealed without a visible outer edge or observable internal wrapping lines.
Shield coverage is determined by a mathematical formula as defined in AS85485 dependent on the physical properties of the cable shield.
Temperature cycling can cause rapid degradation of wire/cable insulation integrity. This can manifest and insulation splits, cracks, and/or delamination. Often an overlooked test method for assessment, the thermal shock test proves and excellent means of assessing the construction quality of a wire or cable.
In general, a visual inspection can be used to determine any cracks, conductor exposure and wire degradation which are good indicators for determining the electrical integrity of a wire specimen or cable.
This test is typically run as part of posttest assessment procedures to evaluate the sample's insulation/jacket integrity after an environmental or other tests.