View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Standard & Regulation Management Maintenance & Sustainment Conference & Report Research Protection & Prevention Arcing Miscellaneous
Popular Tags
Visual Inspection AS50881 MIL-HDBK MIL-HDBK-525 High Voltage FAR Electromagnetic Interference (EMI) FAR 25.1707 AS4373 Maintenance Wire System Arcing Damage
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 Accelerated Aging ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM D150 ASTM D2671 ASTM D8355 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive backshell batteries Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor conductors conduit Connector connector selection connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Future Tech galvanic corrosion Glycol Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage HIRF History Hot Stamping Humidity Variation HV system ICAs IEC60172 IEEE Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning liquid nitrogen lunar maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-23053E MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 MIL–STD–5088 Military 5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Probability of Failure Product Quality PTFE pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE SAE Committee Sanitizing Fluids Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding Shrinkage signal cable Silver silver plated wire silver-plating skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing testing standard Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs UL94 USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance vw-1 wet arc white paper whitelisting Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code

This is a question that Lectromec regularly receives. The reason for this question is that a parts-supplier or system-integrator is looking to find wires in compliance with EWIS requirements. Since there are so many ways to evaluate any component, the important question to consider is if a defined requirements list for aerospace wire exists? Here, we run through several different means of assessing wires and identify what requirements should be considered.

FAA Requirements

As a starting point for any commercial or private vehicles, reviewing FAA guidance is usually a good place to start. Unfortunately, the FAA does not have and published Technical Standard Orders (TSOs) for wires or cables (but they do have one for clamps). FAA regulation 25.1703 states that all components should be selected such that they can operated within their limitations. Further, the environmental conditions within those locations must also be considered when making part selection. Obviously, a low temperature wire (max temperature <85C) should not be installed in the engine compartment. The material properties must be evaluated to ensure compatibility with the local environment.

To go beyond this, the implications of the FAA requirements mean that it is not just the straightforward environmental considerations but also the electrical requirements of the component as well. Wires and cables should not be stressed to such a level that they are overheating when the electrical load is turned on. As an example, wires with single core conductors should not be part of applications that have regular flexing because of conductor fatigue and the increased likelihood of breaking.

Connectors
Each wire should be viewed from the system level and with consideration for its application.

Similar to FAA requirements on other systems, FAA does not specifically state what properties a wire must have; it simply states that it must be able to perform adequately and without degradation during normal operations.

Industry Standards

What constitutes the acceptable performance of an aerospace wire will vary from organization to organization and standard to standard.  SAE wire installation standard AS50881 identifies several classifications of wires/cables that are explicitly recommended for aerospace use. The wires/cables explicitly recommended are those that fall into the AS22759, AS6070, and NEMA27500 categories.

Those familiar with the requirements outlined in each standard know the large number of tests to necessary show compliance and conformity to the standards. Many of the tests that have been developed and now levied on these wire and cable types exist because of lessons learned from wire/cable manufacturing processes to in-service problems.

While some might argue that the tests in assessment requirements on these wires is in excess, many of these wires and cables provide the basis for many of the general-purpose wire used on aircraft. Because there such a variety of thermal, electrical, and mechanical stresses in aerospace application, these wires must be designed to handle as wide a range as possible. From a maintainers perspective, having common wire types throughout much of the aircraft makes easier to maintain aircraft.

Commercial standards

There are applications where fully robust general-purpose aerospace wire is not necessary. Often, these wires are selected when system integrators are looking for means to reduce cost. Some OEMs will allow for this, but in doing so, they also identify a set of criteria a wire must pass. Often times, this testing will include evaluation of the smoke generation, toxicity, and flammability of the wire/cable. The performance assessments of the other properties are then reduced and/or ignored.

From an EWIS certification standpoint, as long as the failure can be mitigated and does not create a hazardous or catastrophic event, regulators have no means of limiting their use. As such, the limited purpose wire/cable are permissible when installed in a limited number areas of the aircraft.

Achieving the EWIS qualified wire status

“EWIS qualified wire” is not a term that should be easily assigned to any wire. What may be qualified for one application may not be applicable for other EWIS applications. Products that have been evaluated as part of some quality management system, already have a leg up on other wire/cables. In order to achieve the same recognition and acceptance as part of the EWIS design, it becomes necessary to evaluate these wires and cables to a set of parameters that match the intended application.

As an ISO 17025 accredited lab, Lectromec has the capabilities and experience to test the wires and cables designated for aircraft installation. If you are looking to determine if a wire or other EWIS component can be placed onto a vehicle, Lectromec can help you get the data you need to prove you have an EWIS qualified part.

Michael Traskos

Michael Traskos

President, Lectromec

Michael has been involved in wire degradation and failure assessments for more than a decade. He has worked on dozens of projects assessing the reliability and qualification of EWIS components. Michael is an FAA DER with a delegated authority covering EWIS certification and the chairman of the SAE AE-8A EWIS installation committee.