View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Standard & Regulation Aging Wires & Systems Maintenance & Sustainment Protection & Prevention Management Conference & Report Research Miscellaneous Arcing
Popular Tags
Visual Inspection High Voltage AS50881 MIL-HDBK MIL-HDBK-525 FAR Electromagnetic Interference (EMI) AS4373 Maintenance FAR 25.1707 Wire System Circuit Protection
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 AC 43 Accelerated Aging accessibility ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude Aluminum arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Resistance Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS29606 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS6324 AS81824 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM B230 ASTM B355 ASTM B470 ASTM D150 ASTM D2671 ASTM D495 ASTM D8355 ASTM D876 ASTM F2639 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive Avionics backshell batteries bend radius Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification cfr 25.1717 Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection cleaning clearance Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor Conductor Testing conductors conduit Connector connector installation Connector rating connector selection connector testing connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) corrosion prevention Cracking creepage D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR electric aircraft Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electrified Vehicles Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) Electrostatic Discharge EMC EMF EMI EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 Fault fault tree Filter Line Cable Fixturing Flammability fleet reliability Flex Testing fluid exposure Fluid Immersion Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Fuse Future Tech galvanic corrosion Glycol Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design harness protection hazard Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage High Voltage Degradation HIRF History Hot Stamping Humidity Variation HV connector HV system ICAs IEC 60851 IEC60172 IEEE immersion insertion loss Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning lightning protection liquid nitrogen lithium battery lunar Magnet wire maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-23053E MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-F-5372 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-7928/5 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 MIL–STD–5088 Military 5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyamide polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Preventative Maintenance Program Probability of Failure Product Quality PTFE pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE SAE Committee Sanitizing Fluids Secondary Harness Protection separation separation distance Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding Shrinkage signal signal cable Silver silver plated wire silver-plating skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy superconductor supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing testing standard Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs UL94 USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance volume resistivity vw-1 wet arc white paper whitelisting Winding wire Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code
Key Takeaways
  • An aircraft’s electrical wiring interconnection system (EWIS) goes beyond wire harnesses, but includes much of the supporting equipment.
  • The EWIS does include engine wire harnesses.
  • Modification of the EWIS does require impact analysis – the first step to understanding the impact is the with is with the review of the collocated systems.

Having well-defined and recognized system boundaries is the best means to ensure an analysis of that system is robust and does not leave any analysis gaps. Without an established limit and assigned responsibilities, arguments will ensue as to who is the responsible party and time/effort will be wasted with duplicated analysis.

Because an aircraft’s wiring touches nearly all of the systems, it can be confusing to understand where the system starts and stops, and this has led to confusion as to the responsible party for the wiring system design and/or maintenance. Some organizations have seen the responsibility fall on the electrical power systems teams, others, avionics. Regardless of who takes up the responsibility, a clear definition of the wiring system’s physical and logical boundaries must be agreed upon. Thankfully, there are several industry documents that can be relied upon.

Starting with the FAA definition

According to 25.1701(a), the electrical wiring interconnection system (EWIS) is, “any wire, wiring device, or combination of these, including termination devices, installed in any area of the airplane for the purpose of transmitting electrical energy, including data and signals, between two or more intended termination points.”

The FAA definition then goes on to list several wiring system components that are included in the EWIS definition, of particular interest is section A14 that states, “EWIS components inside shelves, panels, racks, junction boxes, distribution panels, and back-planes of equipment racks, including, but not limited to, circuit board back-planes, wire integration units, and external wiring of equipment.” From a top-level view, the statement suggests that any wiring that is not specifically located inside of equipment boxes not used for distribution are part of the EWIS.

Engines, Nacelles, and APUs

One area of contention during the original rule definition with the FAA is wiring harnesses attached to engines, nacelles, and APUs. As identified in the disposition of comments, the FAA identified that GE, Honeywell, and AIA/GAMA commented that engine, nacelle, and APUs wiring should be exempt from the EWIS certification and maintenance requirements. Specifically, the wiring in these areas is very robust and that the existing regulations (those in existence prior to the EWIS regulations released in 2007) were adequate.

High Voltage Arcing on Aircraft
When some think of EWIS, they think of the wiring harnesses. But there is a lot more that falls into the boundaries of EWIS.

In response to this, the FAA cited the Lauda Air incident report. “Investigation of the accident disclosed that certain ‘‘hot-short’’ conditions involving the electrical system occurring during an auto-restow command, could potentially cause the DCV to momentarily move to the deploy position.”

As such, the FAA views the wiring within the engines, nacelles, and APU is part of the EWIS and is subject to the same requirements as other areas of the aircraft where EWIS is installed.

AS50881

Other industry documents follow similar thoughts when considering the aircraft EWIS boundaries. The SAE document on EWIS installation, AS50881, pertains to, “wiring inside of airborne electronic equipment, but shall apply to wiring externally attached to such equipment.”

Reviewing the AS 50881 as a whole suggests that the standard believes in the same physical/logical EWIS boundaries as identified in the FAA’s guidance and regulatory requirements. The AS 50881 specifically states that wiring stops at LRUs and there are several sections that referred to the wiring attached to or routed near nacelles, engines, and APUs.

Implications

The fact is, nearly all parts of the aircraft where wiring is routed from one piece of equipment to another require some level of EWIS evaluation. This means, until wireless power transmission becomes viable, the EWIS will need to be assessed for every system. Every LRU added to a vehicle, every additional antenna, every rework of the in-flight entertainment (IFE) system, will require an EWIS impact analysis.

The EWIS analysis depth and breadth will vary from project to project, just like any other system assessment. In some cases, the impact may require unpopular changes to be made. This may require additional routing or more complicated routing in order to avoid and maintain separation distance from critical systems. The analysis might point to additional secondary harness protection to protect from maintenance actions. The number of factors it goes into a properly designed and safe EWIS is rather extensive (the AS 50881 is a 124-page document for a reason).

Final Review

If wiring is outside of a piece of equipment, then there is a strong chance it is part of an aircraft’s electrical wiring interconnect system. As with every other part of aircraft design, overhaul, and maintenance, how each EWIS component is selected, designed, installed, maintained must be documented. For those seeking FAA certification, adherence to best practices established by the industry and following the latest EWIS regulations is the only way to achieve compliance.

For those looking for EWIS compliance or certification assistance, contact Lectromec. Our experience, lab capabilities, and software tools are a great resource for anyone looking to expedite their EWIS certification.

Michael Traskos

Michael Traskos

President, Lectromec

Michael has been involved in wire degradation and failure assessments for more than a decade. He has worked on dozens of projects assessing the reliability and qualification of EWIS components. Michael is an FAA DER with a delegated authority covering EWIS certification and the chairman of the SAE AE-8A EWIS installation committee.