View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Standard & Regulation Aging Wires & Systems Maintenance & Sustainment Protection & Prevention Management Conference & Report Research Miscellaneous Arcing
Popular Tags
Visual Inspection High Voltage AS50881 MIL-HDBK MIL-HDBK-525 FAR Electromagnetic Interference (EMI) AS4373 Maintenance FAR 25.1707 Wire System Circuit Protection
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 AC 43 Accelerated Aging accessibility ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude Aluminum arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Resistance Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS29606 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS6324 AS81824 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM B230 ASTM B355 ASTM B470 ASTM D150 ASTM D2671 ASTM D495 ASTM D8355 ASTM D876 ASTM F2639 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive Avionics backshell batteries bend radius Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification cfr 25.1717 Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection cleaning clearance Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor Conductor Testing conductors conduit Connector Connector Durability Connector Failure Modes connector installation Connector rating connector selection connector testing connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) corrosion prevention Cracking creepage D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR electric aircraft Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electrified Vehicles Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) Electrostatic Discharge EMC EMF EMI EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 Fault fault tree Filter Line Cable Fixturing Flammability fleet reliability Flex Testing fluid exposure Fluid Immersion Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Fuse Future Tech galvanic corrosion Glycol Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design harness protection hazard Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage High Voltage Degradation HIRF History Hot Stamping Humidity Variation HV connector HV system ICAs IEC 60851 IEC60172 IEEE immersion insertion loss Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning lightning protection liquid nitrogen lithium battery lunar Magnet wire maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-23053E MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-F-5372 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-7928/5 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 MIL–STD–5088 Military 5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyamide polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Preventative Maintenance Program Probability of Failure Product Quality PTFE pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE SAE Committee Sanitizing Fluids Scrape Abrasion Secondary Harness Protection separation separation distance Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding Shrinkage signal signal cable Silver silver plated wire silver-plating skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy superconductor supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing testing standard Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs UL94 USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance volume resistivity vw-1 wet arc white paper whitelisting Winding wire Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code
Key Takeaways
  • The idea of skin effect is that as the frequency on a conductor increases, more of the electrical energy is carried through the area closer to the skin of the conductor.
  • As higher frequencies are used, the skin effect reduces the amount of conductor that is used which has an effect of increasing the resistance of the conductor.
  • Skin effects are less pronounced on multi-stranded conductors as each strand may be considered an individual conductor.

Introduction

An area of power transmission that we have not talked about in any Lectromec article thus far is the impact of skin effect. While this is an area that is well documented and understood for signal/data cables, the impacts in the area of power cables have been generally ignored. However, as power systems embrace new power technologies, skin effect starts to creep in to have a noticeable and measurable impact. In this article, we discuss what skin effect is and its impact.

Skin Deep

The idea of skin effect is that as the frequency on a conductor increases, more of the electrical energy is carried through the area closer to the skin of the conductor. This occurs due to Eddy currents inside the conductor responding to the rapid changing current that occurs in AC applications. In high frequency applications, the signal is carried entirely in the plating of the conductor whereas with low frequency, most of the conductor is used to carry the power.

The skin depth formula: \(\delta=\sqrt[]{\frac{2\rho}{\omega\mu}}\) which takes in the parameters of the conductor resistivity ‘ρ’, angular frequency ‘ω’, and permeability of the conductor ‘μ’.

Conductor Resistance

At the introductory level, the resistance of a conductor is straightforward. Based upon the standard properties of copper or in the case of smaller gauge wires, high strength copper alloy, to estimate the resistance of a wire, simply take the known resistance of the copper and multiply it by the length of the wire. From a generalized perspective the resistance for a length of copper can be written as: \(r=\frac{\rho*l}{A}\) where ‘r’ is the resistance, ‘ρ’ is the resistivity of the copper or whatever material is used as a conductor, ‘l’ is the length, and ‘a’ is the cross-sectional area.

For standard utility power of 50 or 60Hz, one can find that the skin depth is relatively high. But as higher frequencies are used, the skin effect reduces the amount of conductor that is used which has an effect of increasing the resistance of the conductor. Looking at the equation above, as the cross-sectional area decreases the resistance of a conductor increases. Further implications of the formula are that with higher frequencies the resistance also increases. For solid round conductors the resistance can be approximated with \(R_{ac}=\left(96*d*\sqrt{f_{MHz}}+0.26 \right) *R_{dc}\). Where d is the conductor diameter in inches and the frequency is in megahertz.

Higher Frequency Power

For those power applications seeking to use higher frequency power systems, the consequence is that larger power carrying wires have more of the power being transmitted through the skin and less through the bulk of the copper. Of course, the question behind this is if a system is using a large conductor, then why go to high frequencies?

This can have a significant impact on thermal heating of wires and wire bundles. The AS50881 has a standard model for wire heating and thermal derating of wires that has been in use for quite some time. But with the use of different and higher frequency power systems, those curves no longer accurately reflect the current carrying capabilities of wire gauges. For example, starting with a standard AS22759/87 wire that is 8 AWG, in ambient conditions, it has a current carrying capability of 140A (this is a single conductor running at 200C – not recommended for most applications). Now this is assuming a 400Hz power system. Assuming a three kilohertz power system, and the current carrying capability changes the results.

First, start with the skin depth and estimate the conductor resistivity. At 400Hz, the skin depth comes to 3.2mm (for a solid 8AWG conductor, this includes the entire conductor); when looking at 3kHz, the skin depth drops to 1.19mm. As a quick back of the envelope estimation yields that the high frequency uses about 8% less of the conductor at the 3kHz than at 400Hz. This may not seem like much, but this can results in greater heating of the conductor and the need to upsize to the next wire gauge.

The impact is less pronounced with stranded conductors as each conductor strand can be considered, for the purposes of estimation, as an individual conductor. This means that the skin depth should be factored for each strand, and for most aircraft applications, the skin depth has a negligible effect on conductor resistance. The more contact between strands breaks this estimation and the conductor acts less like a set of individual strand, such as Lizt cables, and more like a single core conductor.

Wide frequency power systems are not immune to skin effects. In these systems, the power frequency is subject to change based on the current state of the engines. This dynamic power frequency means there is also a dynamic conductor resistance. From a system design the question is if the EWIS should be built for the steady state conditions and accept the additional stresses during the brief durations during takeoff where the frequency will be the highest.

Pulse Width Power Resistance

Further, the impact that needs to be discussed is pulse width modulation. Pulse width modulation is a very popular technology. While this does allow for high frequency control and precision control of electronic motors, it does create challenges on the wiring system. The reason behind this is that the pulse width modulated signal is not simply a DC signal. Using a Fourier analysis of the square wave, it is possible to see that the square wave can be represented with a combination of low and high frequency waves that can be used to estimate the different resistance values of the conductor through the waveform.

In this example, we take a square wave for a 28 volt system. In the pulse width modulated signal for this example, the signal is on for 0.001 seconds then turns off for 0.001 seconds and repeated (i.e. a 500Hz signal with a 50% duty cycle). Assuming a 0.1ms rise and fall time, this suggests a 40kHz transition at the start and end of each pulse.

Dynamic Resistance of PWM System
Pulse Width Modulation (PWM) creates dynamic wire resistance. This means a more complex thermal modeling of the wiring system.

If we now take these frequency components and consider the high frequency elements during the leading and trailing edges of the on-pulse, it is possible to estimate the dynamic nature of the conductor resistance through the duty cycle. Using the skin depth formula yields an estimated skin depth of 0.32mm. If the 8AWG conductor evaluated above is used, during these transition periods the resistance increases by more than 280%.

In this example, the on-off transitions count for about 20% of the total duration the power is applied. While this is not an exact representation of the conductor resistance, it does show that the resistance of the conductor is not uniform. This will certainly have an impact on design, selection of components, and the needs of thermal management.

The higher frequency power elements and their impacts on wire conductivity, i.e. the skin effect, are part of the reason why wires and cables are typically not supplied with current carrying capabilities. Given the wide range of applications and uses of wires, it is impossible for a wire manufacturer to provide an accurate estimation of the current carrying capabilities for every application. It is up to the implementer to identify what the impact is on their wiring system and how the power system impacts the wiring system performance.

Conclusion

As power systems seek more complex means of controlling devices, the simple models used in design will need to be replaced with the more complex calculations and resistance estimations. Those using lower frequency AC power systems (lower than 800Hz) may not need to make any changes, but it will be necessary for high frequency or PWM power systems. The physics to support this is well established, it is a matter of its application to avoid on-aircraft issues.

If you are looking for more information about how your system can perform or will perform at high frequency or high-power applications, contact Lectromec. Our ISO 17025 accredited lab has the capabilities to support the next generation of electric vehicles.

Michael Traskos

Michael Traskos

President, Lectromec

Michael has been involved in wire degradation and failure assessments for more than a decade. He has worked on dozens of projects assessing the reliability and qualification of EWIS components. Michael is an FAA DER with a delegated authority covering EWIS certification and the chairman of the SAE AE-8A EWIS installation committee.