View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Standard & Regulation Aging Wires & Systems Maintenance & Sustainment Protection & Prevention Management Conference & Report Research Miscellaneous Arcing
Popular Tags
Visual Inspection High Voltage AS50881 MIL-HDBK MIL-HDBK-525 FAR Electromagnetic Interference (EMI) AS4373 Maintenance FAR 25.1707 Wire System Circuit Protection
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 AC 43 Accelerated Aging accessibility ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude Aluminum arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Resistance Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS29606 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS6324 AS81824 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM B230 ASTM B355 ASTM B470 ASTM D150 ASTM D2671 ASTM D495 ASTM D8355 ASTM D876 ASTM F2639 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive Avionics backshell batteries bend radius Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification cfr 25.1717 Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection cleaning clearance Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor Conductor Testing conductors conduit Connector Connector Durability Connector Failure Modes connector installation Connector rating connector selection connector testing connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) corrosion prevention Cracking creepage D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR electric aircraft Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electrified Vehicles Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) Electrostatic Discharge EMC EMF EMI EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 Fault fault tree Filter Line Cable Fixturing Flammability fleet reliability Flex Testing fluid exposure Fluid Immersion Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Fuse Future Tech galvanic corrosion Glycol Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design harness protection hazard Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage High Voltage Degradation HIRF History Hot Stamping Humidity Variation HV connector HV system ICAs IEC 60851 IEC60172 IEEE immersion insertion loss Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning lightning protection liquid nitrogen lithium battery lunar Magnet wire maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-23053E MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-F-5372 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-7928/5 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 MIL–STD–5088 Military 5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyamide polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Preventative Maintenance Program Probability of Failure Product Quality PTFE pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE SAE Committee Sanitizing Fluids Scrape Abrasion Secondary Harness Protection separation separation distance Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding Shrinkage signal signal cable Silver silver plated wire silver-plating skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy superconductor supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing testing standard Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs UL94 USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance volume resistivity vw-1 wet arc white paper whitelisting Winding wire Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code

Dealing with EMI and EMV on radio frequency (RF) cables for aerospace applications

Certification

The aerospace industry has been dealing with Electromagnetic Interference (EMI) and Electromagnetic Vulnerability (EMV) since the early 1900s. EMI can cause interruptions ranging from poor signal quality to an overall system malfunction, which can result in devastating outcomes for any type of plane.

EMI is generated by natural phenomena like lightning and static electricity (called natural EMI sources), as well as by cell phones, airport towers, airborne transmitters (from a nearby aircraft in flight, for example) and ground-based satellites. The main rationale behind flight crew instructions to passengers on commercial flights to turn off their cell phones and other electronic equipment prior to aircraft takeoff and landing is related to concerns that EMI could cause unpredictable aircraft behavior and interference with the navigation system. For example, the cause of the 1964 crash of TWA Flight 800 (a Boeing 707) remains unclear, but may have been related to EMI. In 2011, ABC News reported on an industry study that documented about 75 separate incidents of possible electronic interference that airline pilots and other crew members believed were linked to mobile phones and other electronic devices. Even a heart monitor has the capability to cause interference with the aircraft’s electronic systems.

The aircraft systems that are most vulnerable, also known as EMV systems, are navigation and communication systems, autopilot, the fuel sensor, yaw dampers, and auto-throttle. It is very important to use precautions and follow the standards in place to minimize any sort of interference from outside circuits or systems. It is impossible to eliminate all sources of EMI on aircraft, because there are so many types of EMI, including cosmic noise. There are, however, some important methods to eliminate most interference and decrease the chances of EMI.

EMI Reduction – Installation

One of the key factors is the type of wires used on the aircraft and how they are installed. The AS50881 wiring systems installation manual recommends the MIL-C-85485 cable, which is an RF cable for systems that require radio frequency functionalities. They have different shielding and more layers than normal cables, as shown in the figures below:

RF Cable Single Conductor Wire

The shielding in this type of cable is braided to reduce the electromagnetic energy in a particular area to ground. This braided shielding is especially effective at minimizing low frequencies, and it provides maximum EMI protection while maintaining good flexibility. This layer configuration for RF cables can eliminate up to 95% of EMI with appropriate installation by following the AIR4465 Filter Line Handbook. The handbook is very useful for learning about the necessary spacing between the main RF cable and other circuits and systems to decrease EMI.

Wire Degradation
EMI Shielding for Cables

[Left] RF cable with its layers used on aircraft. [Right] Single conductor wire

Ways to reduce EMI/EMV

  • Use the right type of wire (RF Cable)
  • Utilize appropriate spacing between the cables and circuits
  • Insulate the device/circuit properly
  • Eliminate the use of cell phones/electronic devices during takeoff and landing
  • Eliminate shared paths for common-impedance noise
  • Employ appropriate shielding by enclosing cables in a wire-mesh cable jacket
  • Secure the back shell to the connector for a better completed ground circuit

Conclusion

The main topic discussed in this article is the effect of EMI/EMV on aircraft; it also examines the various sources of EMI, including man-made electronics devices and natural phenomena. It is important to understand that an electronic device can affect the functionality and destroy or wipe out the signals of an aircraft. Installing the right type of wires and protecting them as recommended in AS50881 is critical to protecting the aircraft from any sort of EMI/EMV.

Omid Orfany

Omid Orfany

Electrical Engineer, Lectromec

Omid is an EE with a background in electrical system design and analysis. Since he started with Lectromec, Omid has worked on a variety of projects including wire failure assessment, equipment design, and EWIS degradation.