View Latest Blog Entries
Close
Categories
Testing & Assessment Certification Aging Wires & Systems Standard & Regulation Management Maintenance & Sustainment Conference & Report Research Protection & Prevention Arcing Miscellaneous
Popular Tags
Visual Inspection AS50881 MIL-HDBK MIL-HDBK-525 High Voltage FAR Electromagnetic Interference (EMI) FAR 25.1707 AS4373 Maintenance Wire System Arcing Damage
All Tags in Alphabetical Order
2021 25.1701 25.1703 abrasion AC 33.4-3 Accelerated Aging ADMT Aging Systems AIR6808 AIR7502 Aircraft Power System aircraft safety Aircraft Service Life Extension Program (SLEP) altitude arc damage Arc Damage Modeling Tool Arc Fault (AF) Arc Fault Circuit Breaker (AFCB) Arc Track Resistance Arcing Arcing Damage AS22759 AS22759/87 AS23053 AS4373 AS4373 Method 704 AS50881 AS5692 AS6019 AS83519 AS85049 AS85485 AS85485 Wire Standard ASTM D150 ASTM D2671 ASTM D8355 ASTM F2696 ASTM F2799 ASTM F3230 ASTM F3309 ATSRAC Attenuation Automated Wire Testing System (AWTS) Automotive backshell batteries Bent Pin Analysis Best of Lectromec Best Practice bonding Cable Cable Bend cable testing Carbon Nanotube (CNT) Certification Chafing Chemical Testing Circuit Breaker circuit design Circuit Protection Coaxial cable cold bend collision comparative analysis Compliance Component Selection Condition Based Maintenance Conductor conductors conduit Connector connector selection connectors contacts Corona Corrosion Corrosion Preventing Compound (CPC) Cracking D-sub data analysis data cables degradat Degradation Delamination Derating design safety development diagnostic Dielectric breakdown dielectric constant Dimensional Life disinfectant Distributed Power System DO-160 dry arc dynamic cut through E-CFR Electrical Aircraft Electrical Component Electrical Power Electrical Testing Electromagnetic Interference (EMI) Electromagnetic Vulnerability (EMV) EMC EMF EN2235 EN3197 EN3475 EN6059 End of Service Life End of Year Energy Storage engines Environmental Environmental Cycling environmental stress ethernet eVTOL EWIS certification EWIS Component EWIS Design EWIS Failure EWIS sustainment EWIS Thermal Management EZAP FAA FAA AC 25.27 FAA AC 25.981-1C FAA Meeting failure conditions Failure Database Failure Modes and Effects Analysis (FMEA) FAQs FAR FAR 25.1703 FAR 25.1707 FAR 25.1709 fault tree Fixturing Flammability fleet reliability Flex Testing fluid exposure Forced Hydrolysis fuel system fuel tank ignition Functional Hazard Assessment functional testing Fundamental Articles Future Tech galvanic corrosion Glycol Gold Gold plating Green Taxiing Grounding hand sanitizer handbook Harness Design Hazard Analysis health monitoring heat shrink heat shrink tubing high current high Frequency high speed data cable High Voltage HIRF History Hot Stamping Humidity Variation HV system ICAs IEC60172 IEEE Inspection installation installation safety Instructions for Continued Airworthiness insulating material insulating tape Insulation insulation breakdown insulation resistance insulation testing interchangeability IPC-D-620 ISO 17025 Certified Lab ISO 9000 J1673 Kapton Laser Marking life limit life limited parts Life prediction life projection Lightning liquid nitrogen lunar maintainability Maintenance Maintenance costs Mandrel mean free path measurement mechanical stress Mechanical Testing MECSIP MIL-C-38999 MIL-C-85485 MIL-DTL-17 MIL-DTL-23053E MIL-DTL-3885G MIL-DTL-38999 MIL-E-25499 MIL-HDBK MIL-HDBK-1646 MIL-HDBK-217 MIL-HDBK-454 MIL-HDBK-516 MIL-HDBK-522 MIL-HDBK-525 MIL-HDBK-683 MIL-STD-1353 MIL-STD-1560 MIL-STD-1798 MIL-STD-464 MIL-T-7928 MIL-T-81490 MIL-W-22759/87 MIL-W-5088 MIL–STD–5088 Military 5088 modeling moon MS3320 NASA NEMA27500 Nickel nickel plating No Fault Found OEM off gassing Outgassing Over current Overheating of Wire Harness Parallel Arcing part selection Partial Discharge partial discharge at altitude Performance physical hazard assessment Physical Testing polyimdie Polyimide-PTFE Power over Ethernet power system Power systems predictive maintenance Presentation Probability of Failure Product Quality PTFE pull through Radiation Red Plague Corrosion Reduction of Hazardous Substances (RoHS) regulations relays Reliability Research Resistance Revision C Rewiring Project Risk Assessment S&T Meeting SAE SAE Committee Sanitizing Fluids Secondary Harness Protection Separation Requirements Series Arcing Service Life Extension Severe Wind and Moisture-Prone (SWAMP) Severity of Failure shelf life Shield Shielding Shrinkage signal cable Silver silver plated wire silver-plating skin depth skin effect Small aircraft smoke Solid State Circuit Breaker Space Certified Wires Splice standards Storage stored energy supportability Sustainment System Voltage Temperature Rating Temperature Variation Test methods Test Pricing Testing testing standard Thermal Circuit Breaker Thermal Endurance Thermal Index Thermal Runaway Thermal Shock Thermal Testing tin Tin plated conductors tin plating tin solder tin whiskering tin whiskers top 5 Transient Troubleshooting TWA800 UAVs UL94 USAF validation verification video Visual Inspection voltage voltage differential Voltage Tolerance vw-1 wet arc white paper whitelisting Wire Ampacity Wire Bend Wire Certification Wire Comparison wire damage wire failure wire performance wire properties Wire System wire testing Wire Verification wiring components work unit code

A response to the TWA800 accident involving wire damage: SFAR-88

Certification

The SFAR88 requirements and related regulations (66 Fed. Reg. (May 7, 2001)) was the immediate FAA response to the TWA800 accident investigation involving wire damage. The investigation, conducted by the NTSB, indicated that the probable cause was a wire failure that resulted in additional energy being transferred to the fuel quantity indicating system (FQIS). This resulted in the ignition of fuel vapors and the loss of the aircraft.

This conclusion was strengthened by the subsequent investigation of similar aircraft. During this investigation, “[c]orrosion and damage to insulation on FQIS probe wiring was found on 6 out of 8 probes removed from one in-service airplane.” This presented an immediate concern, which led to an airworthiness directive (AD) being issued for certain Boeing 747 aircraft. The AD required the inspection and replacement of any damaged wiring collocated with the fuel pump wiring.

wire damage
Reconstructed wreckage of TWA800 (Source NTSB)

In addition, the NTSB’s report recommended to:

— Reduce heating of the fuel in the center wing fuel tanks on the existing fleet of transport airplanes,

— Reduce or eliminate operation with flammable vapors in the fuel tanks of new type certificated airplanes, and

— Reevaluate the fuel system design and maintenance practices on the fleet of transport airplanes.

To address this and other issues found with fuel tank systems, the FAA released the SFAR88 rules (later integrated into the EWIS regulations released a number of years later, as part of the aircraft certification efforts). An important aspect of these rules, was that they required for “wire installations that are co-routed with wires that may be powered, the physical separation and electrical shielding of FQIS wires to the maximum extent possible.”

It is important to understand that when an electrical arcing event takes place, it is possible for the arc to damage nearby objects, including other wiring. Depending on the wire configuration (number of wires, gauge, available power, etc.), the size of the area, and target wire insulation type, it is possible to damage the wire insulation even when the wires are separated by inches.

However, mechanisms such Lectromec’s custom arc damage testing services and Arc Damage Modeling Tool (ADMT) help quantify the separation level for your aerospace applications thereby ensuring adequate physical separation to protect flight critical wiring.

Michael Traskos

Michael Traskos

President, Lectromec

Michael has been involved in wire degradation and failure assessments for more than a decade. He has worked on dozens of projects assessing the reliability and qualification of EWIS components.